

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 371: Solution for Problem Set 4

Semester/Year: 1/2009

Course Title: Digital Circuits

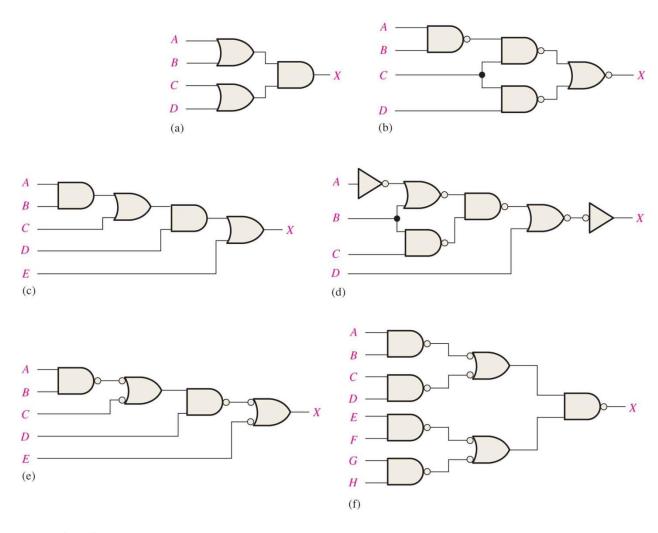
Instructor: Dr. Prapun Suksompong (prapun@siit.tu.ac.th)

Course Web Site: http://www.siit.tu.ac.th/prapun/ecs371/

Due date: July 16, 2009 (Thursday)

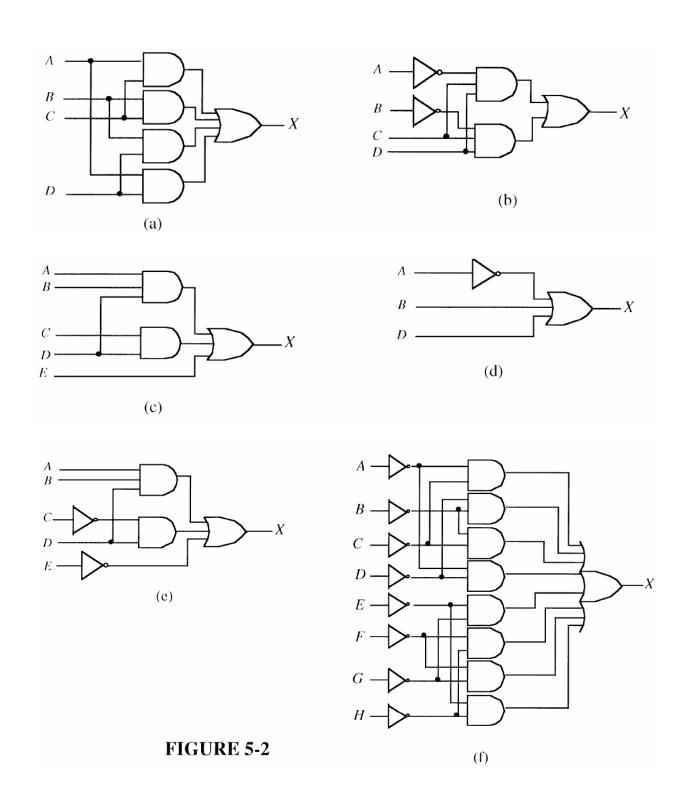
Please submit your homework to the instructor 3 minutes BEFORE your class starts.

Instructions


1. The questions are assigned from the following textbook:

Thomas L. Floyd, *Digital Fundamentals*, 10th Edition, Pearson Education International (2009).

- 2. Only ONE of the problems will be graded. Of course, you do not know which problems will be selected; so you should work on all of them.
- 3. Late submission will not be accepted.
- 4. **Write down all the steps** that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.


Chapter 5

- 4(b,c,e), 20a, 22a, 56
- 4. Write the output expression for each circuit as it appears in Figure 5-56 and then change each circuit to an equivalent AND-OR configuration.

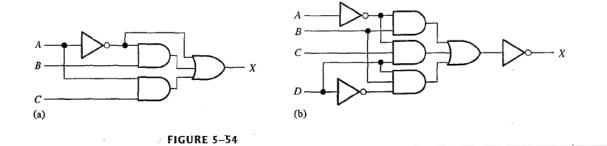
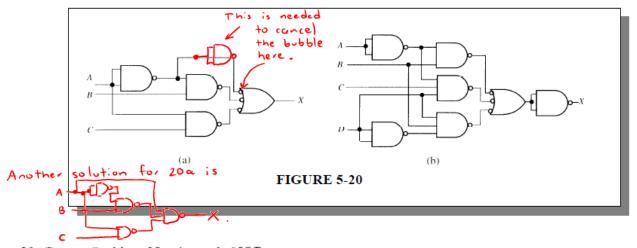
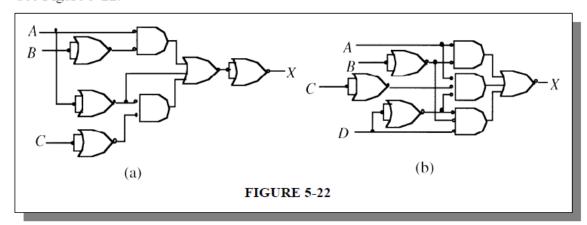
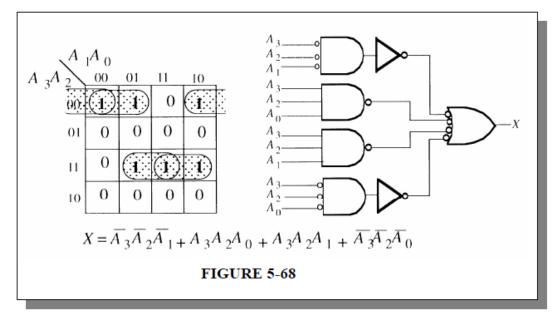


FIGURE 5-56


- 4. See Figure 5-2 for the circuit corresponding to each expression.
 - (a) X = (A + B)(C + D) = AC + AD + BC + BD
 - (b) $X = \overline{\overline{ABC}} + \overline{\overline{CD}} = (\overline{ABC})(CD) = (\overline{A} + \overline{B})CCD = \overline{ACD} + \overline{BCD}$
 - (c) X = (AB + C)D + E = ABD + CD + E
 - (d) $X = (\overline{A} + B)(\overline{BC}) + D = (\overline{A} + B)(\overline{BC}) + D = \overline{A} + B + BC + D = \overline{A} + B + D$
 - (e) $X = (\overline{AB} + \overline{C})D + \overline{E} = (AB + \overline{C})D + \overline{E} = ABD + \overline{C}D + \overline{E}$
 - (f) $X = (\overline{AB} + \overline{CD})(\overline{EF} + \overline{GH}) = (\overline{AB} + \overline{CD})(EF + \overline{GH}) = (\overline{AB} + \overline{CD}) + (\overline{EF} + \overline{GH})$ $= (\overline{AB})(\overline{CD}) + (\overline{EF})(\overline{GH})$ $= (\overline{A} + \overline{B})(\overline{C} + \overline{D}) + (\overline{E} + \overline{F})(\overline{G} + \overline{H}) = \overline{AC} + \overline{BC} + \overline{AD} + \overline{BD} + \overline{EG} + \overline{FG} + \overline{EH} + \overline{FH}$


20. Implement the logic circuits in Figure 5-54 using only NAND gates.

20. See Figure 5-20.


- 22. Repeat Problem 20 using only NOR gates.
- 22. See Figure 5-22.

56. Design a logic circuit to produce a HIGH output only if the input, represented by a 4-bit binary number, is greater than twelve or less than three. First develop the truth table and then draw the logic diagram.

A_3	A_2	$\frac{A_1}{0}$	A_0	X
0	0	0	0	1
0	0	0		1
0	0	1	1 0	1
0	0	1 0	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0 0 0 0 0 0
1	0	1 0	0	0
1	0	0	1	0
1	0	1	1 0	0
1	0	1 1	1	0
1	1	0	0	0
$egin{array}{c} A_3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1$	1	0	1	1
1	1	1 1	0	1
1	1	1	1	1

See Figure 5-68.

